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Executive summary  

Goal of the research 

The goal of this research has been to guide scientists in the running of experiments using 
the tools of mathematics, spanning combinatorics, statistical machine learning and 
probabilistic modeling.  Our work started with a foundation laid by the Principal 
Investigators and others under the broad umbrella of “optimal learning” which provided a 
principled way to guide the scientific process.  At its core, this method consists of 
combining initial belief models with a model of what we learn from the experimental 
process to design policies to guide the sequencing of experiments.   

Technical accomplishments 

The research started with a useful set of tools, but we quickly found that the problems 
faced by scientists were more complex than the relatively simple models we had been 
working with initially.  One of our most powerful tools involves finding the expected 
value of information from different experiments that can be used to guide scientists (this 
might be displayed as a heat map).  However, we found that computing the value of 
information for the more complex belief models that we encountered working with 
scientists required new methodologies. 

Our research has created advances along several lines: 
 Computing the value of information for nonlinear belief models (tuning 

temperatures, pressures, concentrations), high dimensional sparse additive models 
(designing accessibility probes for RNA molecules), multiattribute logistic 
regression (to maximizes successes), and peptide sequence optimization. 

 Calculating the risk of a series of experiments. 
 Statistical prediction of peptide and RNA sequence activity. 
 Sequencing experiments in the search for peptides with target properties, to 

maximize the probability of success within a given experimental budget. 

Outreach/transitions  

Our work has proceeded primarily through interactions with scientists around the 
country, all funded within Hugh De Long’s program.  These have included included: 
Nathan Gianneschi and Mike Burkart at UCSD to build systems of peptides that can be 
orthogonally labeled and unlabeled by protein-modifying enzymes; Chad Mirkin, Stacey 
Barnaby, and Jessica Rouge at Northwestern to build Bayesian statistical models that 
predict the stability of small interfering RNA; Paulette Clancy at Cornell University to 
build optimization methods that can find local minima of energy surfaces, and predict 
crystal structures: Paras Prasad (Buffalo), Tiff Walsh (Deakin), and Marc Knecht 
(Miami) to find peptides that bind specifically to inorganic materials: Lydia Contreras to 
use sparse-additive belief models to guide the design of probes; Benji Marusama at 
AFRL in the design of an optimal learning system to guide a robotic scientist. 
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1. Introduction  

Our interactions with the different teams of materials scientists have given us a genuine 
appreciation of the complexity of the problems being addressed by this community.  
These interactions have allowed us to identify different problem classes in terms of their 
mathematical structure (different problem settings can be mathematically equivalent).  
However, working with the scientists exposed us to the different steps of the scientific 
process, introducing us to the human dimension of the problem of making experimental 
decisions. 

In this section we highlight the anticipated benefits from the research, which spans new 
technologies (models and algorithms for solving specific problems), followed by a list of 
different dimensions of the experimental process that have emerged from the work.  We 
end with a list of different challenges that we encountered. 

Sections 2 and 3 provide research narratives for the work being done at Princeton and 
Cornell, respectively.  We have roughly divided the activities between the two 
universities along broad methodological lines.  Princeton began by focusing primarily on 
optimizing problems with continuous parameters, while Cornell was initially motivated 
by discrete problems such as learning the behaviors of peptides.  Both teams have 
evolved their own research agendas from this initial starting point, coordinating when 
areas for potential overlap would arise.  We have found that the general problem area is 
quite broad – there is more than enough to keep not only our two schools quite busy, but 
also potential research programs that our students might get started if they stay in the 
area. 

1.1. Anticipated benefits from the research 
 Improve the scientific methodology by formalizing the process of designing 

experiments. 
 Our Bayesian model requires that scientists articulate their beliefs from their 

domain knowledge 
 We provide guidance to the choice of experiments, often by finding the value of 

information from an experiment that can be used by the scientist to make 
tradeoffs in the choice of the next experiment(s) to run. 

 We provide a scientific framework for testing and comparing policies for 
designing and conducting experiments 

 Our methods can be used to assess the risk of a series of experiments. 

1.2. Dimensions of the optimal learning research 

As we worked with the scientists, we identified different stages of the experimental 
process.  Understanding these steps helped us understand where we can add the most 
value.  The steps we have identified include: 

 Choosing a line of investigation and assessing risk.  Generally we were not 
involved in this initial stage. 
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 Identifying the experimental choices (decisions), which may consist of 

o Discrete choices such as materials, compounds, mixtures, choice of 
peptide sequence. 

o Setting of continuous parameters such as temperatures, pressures, 
concentrations, … 

o Choice of experimental steps 
 Creating belief models which represents in a formal way the prior knowledge of 

the scientists 
 Running experiments and quantifying the results of an experiment 
 Updating belief models and re-assessing choices. 
 Making the decision to proceed or stop a line of investigation. 
 Education – While the focus of our research was using mathematical tools to help 

guide scientists, we also accepted that part of our role was an educational one.  A 
self-guided tutorial was designed (see 
http://optimallearning.princeton.edu/tutorialsciences.htm) with the goal of helping 
scientists learn more about the process of making effective decisions.   

1.3. Some challenges: 

Below is a summary of some of the challenges we have encountered in the process of 
pursuing this line of research. 

 Our success depends on changing how a scientist makes a decision.  This is more 
than a technical problem - it requires understanding how the scientific process 
takes place.  Possibly our biggest challenge was catching scientists at a point 
where we could add the most value. 

 Scientists are looking for useful results, not necessarily with new methodology.  
However, we tended to find that each new problem introduced new mathematical 
twists which would keep our students quite busy.  This has made the research 
both interesting and challenging from the perspective of our methodological 
community, but it could introduce delays in our ability to meet the needs of 
scientists.   

 Software – Scientists are interested in numbers, not theorems.  Implementing and 
testing algorithms is an essential part of our methodological research, but 
designing production code that can be used by scientists is not.  At this stage of 
the research we are dependent on using graduate students to both develop and test 
the algorithms, and then use the software to help the scientists. 

 The restrictions on most non-U.S. nationalities at military research facilities (in 
particular AFRL) has complicated the process of staffing the project with students 
who could continue the work started by Kris Reyes.  Fortunately this has not been 
an issue with the academic teams. 

 The problem of distance – understanding how people think is best done in-person.  
We do our best using the internet, but working in-person with the scientists is 
valuable. 
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 Did we add value?  We can run simulations comparing our policies to competing 

policies, but it is not possible to run a true competition between our policy and 
what an informed scientist would do on his/her own. 

 Publications – We found that we had to explore new avenues for publishing the 
research where the materials science application was a central component.  The 
methodological journals tend to have a comfort level with certain classes of 
applications, which generally did not include hard sciences.  By contrast, the hard 
science journals are not friendly to mathematics.  We found that journals such as 
SIAM J. on Scientific Computing and SIAM J. on Uncertainty Quantification 
were willing to handle papers with a mixture of hard science with mathematical 
contributions.  Informs J. on Computing also seems willing to handle these papers 
(although we are still waiting on the reviews from our most recent paper).  By 
contrast, the machine learning journals were less comfortable with hard-science 
applications unless we minimized the context.   

 Placement – We are just now facing our first wave of students graduating and 
seeking jobs.  However, the post-doc, Kris Reyes, left the team after finding that 
he was not attracting offers from materials science departments.  It is quite 
possible that he could have found a position in an industrial engineering 
department if we had received more notice about his job search.  We are finding 
that our students need to emphasize their methodological research covering a 
range of applications, rather than just the work in materials science.   

2. Research narrative – Princeton 

In this section we review the research activities conducted at Princeton. 

2.1. Problem settings 

We have been involved in the following projects: 
1. Creating nanoemulsions for the McAlpine group – This problem involved tuning 

parameters such as the diameter of bubbles containing the material to be delivered 
2. Designing a controller for the ARES robotic scientist at AFRL 
3. Maximizing the reflectivity of a surface covered by nanoparticles for the Mirkin 

group 
4. RNA accessibility I – Working with the Contreras group, we designed a method 

to find the value of information from hundreds (or thousands) of different probes 
that could be used by a scientist to sequence different experiments to learn the 
accessibility of an RNA molecule. 

5. RNA accessibility II – In September 2015, we were challenged to help design a 
set of RNA probes that could be used in a single batch experiment to learn about 
the accessibility for the full set of 62 RNA sequences. 

We next divide these projects into five problem settings based on the mathematical 
properties of the learning problems. 

DISTRIBUTION A: Distribution approved for public release.
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2.1.1. Nonlinear belief models I – Sampled belief models 

We begin with the following two projects: 
 Creating nanoemulsions for the McAlpine group  
 Designing a controller for the ARES robotic scientist at AFRL 

Both of these problems involved tuning a series of continuous parameters (diameters, 
concentrations of gold nanoparticles, temperatures, ratios) to fit the parameters of a belief 
model. 

We have been working with the value of information from an experiment x, where x was 
a set of values of the settings of each parameter.  For computational reasons, we 
discretized the continuous space of all settings of these parameters into a set  

(there could be hundreds, even thousands, of these potential settings).  To determine 
which experiment we should conduct next, we began by computing the knowledge 
gradient, which gives the value of information from an experiment.  This is given by 

  

where 

  

Here, we use nK  to represent “what we know” after n experiment.  This might be just the 
point estimate n  of a set of parameters, but it can also include estimates of the 
uncertainty (this could be the variance of n  if it is a scalar, or the covariance matrix if it 
is a vector).  1( )nK x  is the uncertain updated state of knowledge if we run experiment x; 
this is a random variable because we have not yet run the experiment, and are uncertain 
about the outcome. 

In other words, the knowledge gradient captures how well we are going to solve our 
design problem as a resulting of running experiment x.  The problem is that we have not 
yet run the experiment, so its outcome is random.  As a result, we have to take the 
expectation of the maximum of our metric .   
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Prior to starting this project, we had worked out how to compute  

when our belief nK  is linear in any unknown parameters which we denote by  .  There 
are two important classes of linear models: 

 Lookup tables – Let  be our belief about running experiment x (x might be the 

choice of a particular catalyst).  When we use a lookup table representation, we 
have to store a value  for each value of x.  This might be required if x refers to a 

discrete choice such as a catalyst or type of molecular substituent.  If x is a 
multidimensional vector, then discretizing x might produce millions of 
possibilities, which can become quite clumsy. 

 Linear, parametric models – Assume that x is a continuous parameter such as a 
temperature or concentration.  We might write our belief as 

. 

The parametric model might be nonlinear in x, but it is linear in .  When this is the case, 
we have developed methods for calculating the knowledge gradient for these two broad 
classes of belief models. 

When we began working with materials scientists, almost immediately we found there 
was a need to learn models that were nonlinear in the parameters.  Such models might 
describe the diffusion of a chemical as a function of temperature or ratio of two 
concentrations. However, this significantly complicates calculating the knowledge 
gradient because of the problem of computing the expected value of the maximum of a 
nonlinear function.  We note that the biggest challenge in calculating the knowledge 
gradient is computing the outer expectation over the multidimensional vector .  For 
example, the figure below shows the nonlinear model developed for the nanoemulsion 
experiment being conducted by the McAlpine group.  The blue circles highlight the 
tunable parameters which would make up the vector , while the tunable parameters 
would make up the vector x.   

We experimented with several strategies for computing , which is 

part of the knowledge gradient.  Initially we experimented with classical Monte Carlo 
sampling, but we found that we needed very large samples (because of the nonlinearities 
in the function ) which made its computation very expensive (we might 
have thousands of values of x).  We looked into using the structure of a very general class 
of statistical models known as generalized linear models, but were unable to make any 
progress there.   

We then transitioned to a powerful strategy involving the use of a sampled belief model.  
Here, we redefine the expectation around a small sample of possible values of the 

parameter vector  where the set .  We would then let 

 be the probability that  was the true value of .  One value of this 

approach was that we could control the distribution of possible values of  better than 

 1max ( , ( ))n
yE F y K x
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we could than when we assumed that it followed a multivariate distribution (which is 
how all of our original work proceeded).  The problem with using a multivariate normal 
distribution is that the normal distribution ranged from minus infinity to plus infinity, 
which invariably created unrealistic, extreme behaviors.  In fact, a major advantage of a 
sampled belief model is that we could allow scientists (perhaps even a team) create a 
population of possible values. 

We would start with an initial set of probabilities that was uniform over the sample.  That 
is, if we have K possible values, we would set  

 . 

Next, we would then assume that an experiment produced a noisy outcome from our 
nonlinear model, which we can write as 

 . 

Typically we would assume that the noise  was normally distributed with mean 0 and 
a standard deviation that would be estimated by the scientist based on prior experience 
with experimental variability.   

Next, we would use a simple application of Bayes’ theorem to produce an updated 
estimate of the probabilities  given the prior probabilities .   

0 1
kq

K


1 1( | )n n k n
xW F x x       

1n 

1nq  nq
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In our initial work, we would assume that one of the set of possible values  was 

the true parameter vector.  We found that the knowledge gradient was able to quickly 
identify which of these was the truth.   

The combination of computational tractability, and the transparency in the specification 
of the set of possible values, made this quite attractive.  We also believe that it did quite a 
good job guiding the experiments required to maximize .  However, if  had 
more than three dimensions, we found that it was generally the case that none of the 
sampled values of  was close to the true value in all dimensions (this is the well-known 
curse of dimensionality).  We could not even count on using the estimate 

   

as an estimate of the true value.  This concern motivated the line of research we describe 
next. 

2.1.2. Nonlinear belief models II - Resampling 

After several false starts, we stumbled into the idea of using resampling, where we would 

generate new values of  that would be added to our sampled set .  We would do this 

by periodically using our series of experiments  (where  is the 
parameter settings made after n observations, 
and  is the outcome of the n+1st 
experiment).  We would then use this data to 
solve the statistical problem: 

. 

We could have taken the best value of  that 
solved this equation, but we made better use of 
the very limited set of experiments by taking a 
sample of, say, 20 “good” values of  that 
solved this problem.  This is known as 
sampling from the epigraph of the function 
(the points in the white ellipse in the figure to 
the right).  We solved this problem by creating a very large set of sampled  (say, 

10,000), finding the values that produced small values of the fitting function , and 

then taking a sample of these.  We would use this expanded set of sampled values and 
then return to our uniform prior (now over a larger set), and rerun the Bayesian updating 
equations (without requiring any new physical experiments).  We would then drop the 
values of  with the smallest probabilities to obtain a new set of K parameters (we 
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would have to rerun the Bayesian updating equations one more time with this reduced 
set). 

This resampling strategy has been working very well in synthetic experiments where we 
sample from a problem where we control the truth.  In the figure below, we plot the 
opportunity cost, which measures our ability to find the design that optimizes our metric 
(reflexivity, conductivity, strength, …) using our simulated known truth against the 
design we identify using data from our experiments.  The lower, red line shows how well 
we thought we were doing when we assumed that one of our initial set of K parameters 
included the truth.  The top purple line shows how well we were actually doing with a 
fixed sample when we recognized that this was just a sample, and that the truth was 
drawn from a much larger population. 

The two intermediate lines are drawn from two variations of our resampling algorithm, 
where we experimented with two performance metrics.  The first was the original metric 
(e.g. maximizing reflexivity, conductivity, strength, …) while the second used the 
entropy of the belief vector  which placed more emphasis on learning the true value of 
the parameters (we often found that this was a priority of the scientists).  We found that 
using the actual performance metric would either work similarly or slightly better.   

The finding that entropy worked reasonably well was itself a somewhat surprising result, 
since the opportunity cost focused on the original performance metric.  Using just entropy 
would perform just as well as using the performance metric when all of the unknown 
parameters were important.  There are problems, however, where some of the parameters 

nq
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are much more important than others.  We think that it is in these problems (which we 
tested by creating irrelevant parameters and throwing them into the set) where using the 
performance metric proved to be a somewhat better guide.   

This entire line of research provided a much deeper insight into the challenge of optimal 
learning using a parametric belief model.  The work we originally started with Peter 
during his graduate student years focused initially on lookup table belief models, where 
there is a parameter  for each possible experiment x (here,  is the performance 

metric).  With this belief model, it is very important to focus on the experiments that help 
us identify the settings that produce the best values of .  By contrast, when using a 

low-dimensional parametric model, it important to learn the correct value of  than it is 
to maximize , since learning the correct value of  allows us to then maximize 

.  This was an insight we did not fully appreciate until this year. 

2.1.3. Maximizing the reflexivity of a surface 

This project evolved out of discussions with the Mirkin group (during a two-day visit last 
year).  The experimental problem involved two stages: 

Stage 1: The scientists had to choose the size and shape for the nanoparticles that that 
would be spread over the surface. 

Stage 2: They then had to run a series of different experiments that could be run in 
batch. 

This setting introduced two novel twists.  First, the experiments were nested: the decision 
on size and shape had to be made before performing a series of experiments at different 
densities.  Second, the nested experiments (over different densities) could be run in batch, 
an experimental technique that actually arises with some frequency.  

To solve this, we first had to determine the expected value of information we could 
expect from a single batch of experiments.  This information then had to be used to 
inform the value of making tests of experiments over different sizes and shapes 
(obviously, these were categorical choices). 

Batch experimentation means that we have to choose experiments without knowing the 
outcomes of other experiments.  This problem would normally be solved using a classical 
design-of-experiments strategy such as Latin hypersquares, where a set of M experiments 
are chosen so as to maximize the spread of experiments over the search space.  The 
limitation with these methods is that they do not allow the scientist to use his/her domain 
knowledge.  For example, Mirkin’s group had an approximate knowledge of the range of 
densities that were most promising.  Our logic exploits a Bayesian prior so that the 
scientists can provide a reasonable guess.   

A method that would not work in this setting is to compute the knowledge gradient for all 
possible densities that might be tested, and then picking the M best (if M is the size of our 
batch).  Such an approach would tend to pick a set of densities that were close in value.  

x x

x


( | )F x  
( | )F x 
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The problem is that picking, say, density 10 reduces the value of trying densities 9 and 
11.   

We overcame this by simulating the potential outcomes of each experiment, and then 
updating the knowledge gradients before picking the next.  We repeated this M times to 
create a batch of M experiments that maximized a simulated value of information.   

Finally, this value of information was imbedded in the evaluation of each size and shape 
of a nanoparticle. 

The simulated performance of this method was excellent, with a publication in the 
respected SIAM J. on Scientific Computing.  By the time that this work was complete, 
the scientists had moved on to new questions.  However, the method we worked out to 
solve this problem was used later in our work on RNA accessibility for Lydia Contreras. 

2.1.4. RNA accessibility I 

Lydia Contreras approached us with an interesting challenge – designing probes to learn 
the structure of an RNA molecule.  The probe has to be designed to attach to a specific 
sequence of nucleotides.  If the probe attaches, then we know that this particular sequence 
is accessible.  Thus, a probe might be designed to attached to a particular region highlight 
(in red) below: 
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Creating and testing probes is time consuming, so there was considerable interest in a 
policy that would make this experimental process as efficient as possible.  We 
approached the problem by first creating a belief model of the form: 

 

The methodological challenge was the fact that the summation in the equation above was 
over a large number of sites, where we had to estimate the accessibility coefficient  for 

each site (a single strand of RNA might have from 100 to 400 sites).  Further, most of 
these parameters would be zero. 

This was a good setting for a sparse additive belief model, which describes high-
dimensional linear models where most of the parameters are zero.  Traditionally, this is 
easily handled by a method called Lasso which includes a penalty for allowing a 
parameter to be greater than zero.  Increasing this penalty reduces the number of nonzero 
parameters, reducing the effect of spurious coefficients (nonzero coefficients with 
relatively meaningless values). 

The difficult is that Lasso has to be run in batch, and therefore assumes that the 
observations already exist.  In our experimental setting, we have to collect observations 
one at a time.  We applied the thinking of the knowledge gradient, but this required 
solving a problem of the form 

Normally, the expectation is over two sets of variables: the prior on the parameters, 
followed by the random outcome of an experiment.  Here, we have four sets of 
expectations: 1) the random variable indicating which sites have zero coefficients 

k
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(represented by the 0/1 random variables ), 2) the probabilities  (which are 

themselves random at time n) of whether each , 3) the values of the nonzero 

coefficients , , and 4) the outcome of the experiments, given by .   

This expectation was computationally intractable, so we approximated it with the second 
line, where we replaced the random variables  and , with their current estimates 

 and , allowing us to focus on the randomness of the update coefficients  and 

the experimental outcome .  Even this approximation was quite difficult, since the 
updated estimates  required anticipating the solution of the Lasso optimization logic.  
In fact, we used a version of Lasso known as group-Lasso to handle the property that the 
coefficients could be clustered due to their relative proximity to each other.  

The graduate student, Yan Li, undertook a very difficult implementation of a variant of 
Lasso known as recursive Lasso to handle the fact that we were not doing experiments in 
batch, but rather were updating estimates one observation at a time.   

The system was implemented by computing the value of information for each possible 
probe.  This was then displayed using the graphic below, where the horizontal axis 
showed the location on the RNA strand, and the vertical axis showed the value of 
information.  This graphic allows a scientist to make subjective evaluations of which 
experiment to run next, since some probes are easier to construct than others (for 
example, because material might be already available in the lab).   

The logic has been carefully tested using simulated data that allows us to assume a truth, 
and then evaluate how well we discover the truth. 
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At this point in the project, our post-doc, Kris Reyes, took another position, leaving the 
work in the hands of the graduate student, Yan Li.  However, by the time we were ready 
to move forward, Lydia and her team had switched gears, which we describe next. 

2.1.5. RNA accessibility II 

Round II of the RNA accessibility project involved making the transition to guiding 
sequential experiments, to one where all the work was going to be done as one large 
batch.  From the perspective of information acquisition, this is an entirely different 
problem, since the only information we are given all comes in the form of the initial 
prior. 

Lydia’s graduate student, Jorge, introduced us to a numerical modeler called 
RNAStructure which takes as input a sequence of nucleotides (for a particular RNA), and 
outputs a two dimensional depiction as shown below.  This two-dimensional graphic 
hints at the structure of the molecule.  Also, each nucleotide was printed in a color that 
indicated the probability that the segment would be accessible. 

Unfortunately, these results were not output in a machine readable form.  Since we had to 
convert 61 RNA molecules (approximately 8000 nucleotides), we bought pizza for my 
entire lab and we spent the afternoon with everyone translating these figures into a 
machine readable form.  
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2.2. Objective functions 

In the process of doing this work, we have encountered the following objective functions: 

 
 Maximizing a performance metric such as conductivity, strength, or minimizing 

the number of flaws.  This was the original objective function that we used to start 
the research. 

 Minimizing the deviation of an estimated parameter from the true parameter.  We 
made the transition to a methodology that struck a balance between maximizing a 
performance metric and minimizing the deviation from the true parameter (this 
work is contained in the resampling algorithm).   

 Maximizing the probability of a discrete success (as in creating a double-walled 
carbon nanotube) – This objective is being used in ongoing research using a 
logistic regression belief model. 

 Maximizing the fit of a release profile by minimizing the square of the deviation 
from a target release profile.  This objective is being used in ongoing research to 
handle a Chi-squared objective (a draft paper should be ready this spring). 

 Minimizing the risk that an experiment products a metric less than some target.  
This is work we presented last year that indicates that our logic for sequencing 
experiments can be used to simulate the experimental process.  This logic can be 
used to help program directors assess the risk of undertaking a new set of 
experiments. 

Recognizing this diversity of objectives has made us realize that we have to pay special 
attention to understanding what a scientist is trying to achieve. 

2.3. New learning algorithms 

Our work has produced a series of new learning algorithms, including: 

 Maximizing the value of information for a sampled, discrete prior. 
 Maximizing the value of information for sampled priors with resampling. 
 Maximizing the value of information from a batch set of experiments 

(implemented for both the problem of testing continuous densities, as well as the 
probes used for RNA accessibility). 

 Maximizing the value of information for nested experiments. 
 Maximizing the value of information using a sparse, additive belief model. 

 

We are also working on two new methods: 

 Maximizing the expected number of successes (e.g. the number of double-walled 
nanotubes produced by the ARES robot) using a logistic regression belief model. 
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 Maximizing the value of information when the belief model is represented using 

tree regression.  This extends the sparse additive belief model so that it can handle 
nonlinear interactions between explanatory attributes. 

2.4. Next steps 

An issue that is on our radar screen is that our nonlinear belief models are typically 
simplifications of the actual problem.  These models are likely going to be locally 
accurate.  However, our mathematics assumes that they are globally accurate.  As a 
result, a byproduct is that we may recommend performing extreme experiments, since 
this is where we tend to collect the most information.  The figure below illustrates this, as 
it illustrates that there is generally the most variability near the edges of the experimental 
region (it is possible to create settings where the opposite is true, but the figure below is 
more typical in actual experiments).   

 

There are two problems with running experiments near the edges: 
 The edges tend to represent extreme values (e.g. very high or very low 

temperatures) which may be difficult experiments to actually run. 
 Our low-order model is going to be less accurate near the edges, while the best 

results may be near the mid-point.   

We are currently working out the theory for optimal learning for nonlinear belief models 
that are only locally accurate.  In the process we have made to date, we are working on a 
method which adaptively tries to learn the optimum of the function (this is known as a 
“proximal point” in the algorithmic literature).  Rather than sampling at this point (as 
other algorithms do), the knowledge gradient will sample in the neighborhood – not too 
close (you do not learn anything), but not too far (due to the errors in the model). 

2.5. Mathematical results 

As we develop new methodologies, we also explore what we can from a theoretical 
perspective.  These results tend to come in the following forms: 
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 Asymptotic convergence results – We like to demonstrate what happens if our 

experimental budget were to grow without bound.  We currently have asymptotic 
results for all of our algorithms (the convergence for the discrete prior with and 
without resampling is in preparation). 

 Bounds on finite convergence – These results tend to be much harder, but we 
were able to develop these bounds for the sparse-additive belief model, a result 
that would naturally generalize to the original results with a linear model. 

 Other mathematical properties – These are typically structural results that provide 
insights into specific problems. 

2.6. Belief models 

Without question, the biggest learning experience was the value of using domain 
knowledge to develop belief models.  For example, we learned quite a bit from Kris 
Reyes who contributed his ability to model the nonlinear dynamics of chemical processes 
using simple differential equations characterized by a few physical parameters (an 
example of this is illustrated above). 

However, belief models tended to be unique to each setting.  For example, a scientist at 
MIT was trying to determine which experiment to run to very expensive experiments 
(each required dedicated time at a LBNL facility).  This problem involved testing two 
parameters – the combination of these two parameters would produce four different 
materials.  The figure below (left) showed the scientist’s uncertainty about the boundaries 
between the regions.  The figure on the right represented a series of hand-drawn images 
showing the relationship between a photo-induced current and the density of 
nanoparticles on a surface.  Simply constructing these diagrams helps to highlight the 
regions where a scientist should be running experiments. 

 

 

3. Research Narrative – Cornell 

At Cornell, we have developed Peptide Optimization with Optimal Learning (POOL), 
which is a new suite of mathematical methods for finding peptide sequences with 
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desirable properties with minimal experimentation.  We have deployed POOL in the 
following scientific projects with AFOSR-funded scientific collaborators: 

 Finding peptides with specific enzymatic activity.  Joint work with Nathan 
Gianneschi, Michael Burkart, and Michael Gilson, at UCSD. 

 Finding peptides with specific binding against metals.  Joint work with Paras 
Prasad (Buffalo), Marc Knecht (Miami), and Tiffany Walsh (Deakin), also 
involving Mark Swihart (Buffalo) and Aidong Zhang (Buffalo). 

We have also worked on the following complementary projects in which the goal is to 
develop statistical models for inferring chemical activity from peptide sequence and 
historical training data: 

 Development of statistical models for inferring peptide binding against carbon 
materials from phage display data (with Rajesh Naik and Christina Harsch at 
AFRL). 

 Development of statistical models for inferring the stability of small interfering 
RNA (with Jessica Rouge, Stacey Barnaby, and Chad Mirkin at Northwestern). 
 

3.1. Overview of POOL 

In POOL, we discover peptides with desirable properties through this iterative loop: 

1. We begin with data in the form of some (typically small) collection of peptide 
sequences with previously determined activity (“training data”), and potentially 
with prior information supplied by scientific collaborators. 

2. We use this training data and prior information as input to a Bayesian statistical 
model that provides a joint probability distribution over the activity of 
unmeasured peptides.  This probability distribution can be used to predict activity 
for previously unmeasured peptides; can also be used to calculate an uncertainty 
associated with these predictions; and can even be used to compute a correlation 
between the errors of two previously unmeasured peptides.  In our work to date, 
the statistical model used has been Naive Bayes or Bayesian linear regression. 

3. We use this probability distribution to recommend a peptide or set of peptides 
to test next.  This recommendation is created by valuing experiments according to 
value of information analysis, and then by using combinatorial optimization 
techniques to find a peptide or set of peptides that provide near-optimal value of 
information. 

4. Our scientific collaborators test the recommended peptides, add this to the 
training data, and repeat from step 1 until the experimental budget is exhausted or 
a peptide of sufficient quality is discovered. 

This iterative process is illustrated below in Figure 1. 
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Figure 1: POOL’s iterative approach to finding peptides with desirable properties.  
Experiments are processed using a machine learning-based statistical model.  This model 
is used within a value of information analysis to generate a recommendation of peptides to 
test.  These peptides are evaluated by an expert (this step is optional, but nevertheless 
useful), and then tested in experiment.  This loop is repeated several times until peptides 
of the desired quality are discovered. 

3.2. POOL’s capabilities and demonstrated uses 

We have developed versions of POOL for several specific peptide discovery tasks, which 
evolved over the course of the project to address specific needs from our scientific 
collaborators. 

 POOL v1.0 seeks peptides that are as short as possible, and that exhibit activity, 
where activity is binary (“hit” or “miss”) and is measured by an assay that can test 
many peptides at a time.  Activity can be measured by a single assay, or can be a 
composite of several different assays.  POOL v1.0 requires examples in its 
training data of longer peptides or proteins that are hits. 

 POOL v2.0 also seeks short peptides that exhibit activity, using an assay that can 
test many peptides simultaneously, assuming binary responses, but differs from 
POOL v1.0 in that it is designed for finding peptides with specific activity, 
measured by combining results from multiple independent assays.  By performing 
statistical analysis separately on each assay type, POOL v2.0 offers to find short 
hits with fewer experiments than POOL v1.0 for composite activity measures.  
Also, while POOL v1.0 requires examples in its training data of long hits, POOL 
v2.0 requires examples only of peptides (long or short) that are active for each 
constituent assay, and not for the global specific activity measure of interest.  This 
makes it significantly more general. 
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 POOL v3.0 can be used with assays that provide quantitative rather than binary 

responses, and can be used to search for peptides that provide a large response 
from a single assay, or for which the ratio of responses of one assay over another 
is large.  By using quantitative responses rather than binary ones obtained by 
thresholding, we provide more information to statistical methods, improving their 
performance, and also avoiding the need to choose arbitrary thresholds 
 

Below we describe in more detail the use of these versions of POOL in four distinct 
scientific use cases: 

 Reversible peptide labeling: In this project, we used POOL v1.0 to search for 
peptides that were substrates for a pair of protein-modifying enzymes, Sfp and 
Acp hydrolase, where activity was measured through the use of a membrane-
based assay. (Joint with the Giannechis team at UCSD) 

 Orthogonal reversible peptide labeling: In this project, we used POOL v2.0 to 
search for peptides that are substrates for one of a pair of phosphopantetheinyl 
transferases (PPTases), Sfp and AcpS, but not the other, and also are substrates 
for AcpH, where activity was measured through the same membrane-based assay.  
(Joint with the Giannechis team at UCSD) 

 Specific peptide binders: In this project, we use POOL v3.0 to search for peptides 
that bind strong to gold and weakly to silver, and for other peptides that bing 
strong to silver and weakly to gold.  We measure activity one peptide at a time, 
using a quantitative QCM assay.  (Joint with the Prasad team based at Buffalo) 

 Peptides with specific matrix metalloproteinase (MMP) activity: In this project, 
we use POOL v3.0 to search for peptides that exhibit activity for one of a pair of 
MMP enzymes, but not the other, using a quantitative assay where we measure 
multiple peptides at a time.  (Joint with the Giannechis team at UCSD) 
 

Figure 2 provides a timeline showing these four scientific demonstrations of POOL, and 
the respective versions of the POOL methodology used. 
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Figure 2: POOL’s algorithmic development.  Timeline describing the development of 
the three versions of POOL, and the scientific uses to which they have been put. 

 

3.3. The character of POOL’s recommendations 

Before describing the mathematical foundations of POOL in detail, we first offer a more 
intuitive explanation of the character of POOL’s recommendations, and how they differ 
from other past approaches using machine learning for chemical discovery. 

While past approaches to the use of machine learning prediction for chemical discovery 
have focused on the accuracy of the machine learning method, POOL’s value of 
information analysis builds in “mathematical safeguards” to offer robust performance in 
spite of inaccurate machine learning predictions. 

When POOL recommends several peptides to test simultaneously, included will be some 
peptides from the region of sequence space that is predicted to perform best, and other 
regions that are likely to perform well if this region does not perform as well as expected.  
POOL hedges its bets in this way, providing a set of peptides to test that is both predicted 
to perform well, and that is robust to prediction errors.  Building in robustness in this way 
typically produces diverse recommendations, but unlike ad hoc approaches to ensuring 
sequence diversity, this approach ensures that the diversity added is of the kind most 
supportive of the overarching peptide discovery goal. 

Figure 3 illustrates the diversity of the peptides recommended through POOL in the 
reversible labeling project.  In this visualization, peptides have been projected into a two-
dimensional space in a way that preserves the distance between pairs of peptides, 
calculated using a modified version of edit distance, using a dimension reduction 
technique.  Thus, in this diagram, the distance between two points is approximately 
proportional to the modified edit distance between the corresponding pair of peptides. 
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Figure 3: Visualization of Peptide Optimization with Optimal Learning (POOL).  Each 
point represents a peptide, present either as training data, or recommended by POOL or 
one of two benchmark methods: Mutation, and which takes known hits and mutates them 
randomly; and Predict-then-optimize, which ranks peptides according to the same machine 
learning prediction method used by POOL.  We see that POOL provides a set of peptides 
that includes at least one peptide from the region of the search space predicted to perform 
well, but that also explores regions of the sequence space that will perform well if this 
prediction is erroneous. 

This diagram visualizes recommendations from POOL (purple) calculated using training 
data (grey) available in one round of the reversible labeling project, in which our goal 
was to find short peptides that were substrates for one PPTase enzyme but not the other, 
and also a substrate for AcpH.  It also visualizes recommendations made using two other 
benchmark methods: Mutation, which takes known hits and mutates them; and Predict-
the-optimize, which uses the same prediction method used by POOL, but simply ranks 
the peptides according to their probability of being a hit, and tests them in decreasing 
order of this probability. 

We see that Mutation provides small clumps of recommendations, in the vicinity of 
known hits, while Predict-then-optimize provides a single clump of recommendations, in 
a region of the space likely to contain a hit.  POOL’s first recommendation is near this 
clump of recommendations from Predict-then-optimize, but its subsequent 
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recommendations explore the space, providing a diverse set of peptides to test that is 
much more likely to provide at least one hit. 

Figure 4 shows results from a simulation study in which we compare these benchmark 
methods against POOL, in the task of finding a single peptide that exhibits specific 
activity (i.e., is a “hit”).  We use training data and the Naïve Bayes statistical method to 
compute a probability distribution over whether each untested peptide is a hit or not, and 
then simulate data using this probability distribution, hiding it from the methods to be 
evaluated.  Then, for each sample of simulated peptides, and for a given number of 
peptides tested, we calculate whether the method would have found a short hit.  By 
averaging across samples of simulated peptides, we are able to calculate the probability 
that a method is able to find a short hit, within a given experimental budget.  The figure 
shows that POOL is able to obtain a substantial improvement over both benchmark 
methods. 

 

Figure 4: Simulation study comparing the performance of POOL and two benchmark 
methods, in terms of their ability to find at least one short peptide with specific activity in 
a reversible labeling project, using the same training data illustrated by Figure 3. 
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3.4. Mathematical Foundations of POOL 

At the heart of POOL lies first a probabilistic machine learning model, which is a variant 
of Naïve Bayes in POOL v1.0 and v2.0, and is Bayesian linear regression in POOL v3.0, 
and a value of information analysis.  To give the main ideas behind POOL in a 
mathematically precise way, we give a detailed description of POOL v1.0 below. 

3.4.1. Statistical Analysis 

In POOL v1.0, we represent peptides using a reduced amino acid alphabet, as a sequence 
x = (x1,…,xk) of elements from this alphabet.  We let y(x) represent whether peptide x is 
a hit (y(x)=1) or not (y(x)=0), and following the Naïve Bayes approach we assume that 
there are two unknown matrices θ(hit) and θ(miss) that provide the probability of a hit 
according to the following formula. 

 

Here, P(hit) is the known prior probability that a peptide chosen uniformly at random 
from sequence space is a hit, and was chosen in consultation with our scientific 
collaborators.  P(miss) is the corresponding probability that a peptide is not a hit, and is 
given by, P(miss) = 1 – P(hit). 

In the formula above, θ(hit) and θ(miss) are unknown, and are estimated using Bayesian 
inference, in which we place a prior probability distribution created by placing an 
independent Dirichlet distribution on each column.  With this choice of prior distribution, 
the posterior distribution on θ(hit) and θ(miss) retains the same functional form, and can be 
sampled efficiently.  Thus, P(y(x)=1 | x) can be obtained by sampling many θ(hit) and 
θ(miss) matrices from the posterior, computing P(y(x)=1 | x, θ(hit) , θ(miss)) for each, and then 
averaging this quantity across samples.  

Given a collection of peptides, a joint distribution over the binary vector given by 
whether each peptide is a hit or not can be computed similarly.  While property of being a 
hit, y(x)=1 given θ(hit) and θ(miss) is conditionally independent across peptides, they are 
correlated under the unconditional (marginal) distribution, because the common use of 
the same sampled  θ(hit) and θ(miss) matrices induces correlation.   

3.4.2. Value of Information Analysis 

Using the statistical model described above, we may compute a probability distribution 
given all available training data over the vector (y(x) : x is in S), for any set of peptides S. 
This then allows us to compute the quantity P(at least one short hit in S) as  

P(at least one short hit in S)  = P(y(x) = 1 and length(x) < b for at least one x in S). 
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We then seek to find the set of peptides to test S that maximizes the probability of 
success, where success is measured as finding a hit in the set of peptides tested whose 
length is less than (or equal to) b. This problem can be written mathematically as 

 

where E is the set of all peptides, and k is the number of peptides, e.g., 500, that can be 
tested in a single round of experimentation. 

This is a challenging optimization problem, and so we use an approximate solution based 
around a greedy approach, in which we iteratively add peptides to S that most increase 
the objective function, P(at least one short hit in S), until we reach our limit on the size of 
S.  Although this approach does not necessarily provide the optimal recommendation, its 
quality as compared with the optimal solution has a mathematical guarantee on quality, 
given by the following theorem. 

 

The peptide added under the greedy strategy also has appealing intuition: it is the one that 
is most likely to be a short hit, given that all peptides previously added to S are not hits.  
This is the mechanism referenced above by which POOL provides diverse 
recommendations, and builds in mathematical safeguards against the event that the initial 
peptides tested are misses. 

3.5. POOL’s demonstrated uses 

We now describe three scientific demonstrations of POOL, which illustrate POOL’s 
functionality, and demonstrate its general ability to support and accelerate scientific 
discovery. 

3.5.1. Reversible peptide labeling systems 

In this project, joint with the Gianneschi / Burkart / Gilson team at UCSD, we sought to 
find peptides that are substrates for a pair of protein-modifying enzymes: Sfp, which is a 
phosphopantetheinyl transferase (PPTase); and Acp hydrolase (AcpH). 

For peptides that are a substrate for both enzymes, pictured below in Figure 5, the first 
enzyme (Sfp) catalyzes a reaction that attachés a phosphopantytheine arm (PPant-arm) to 
a conversed serine residue within the peptide.  This PPant-arm may have attached to it an 
arbitrary label, which might be a fluorescent dye, or could be a surface, or a bead, or 
some other object providing chemical functionality.  This attachment functionalizes the 
peptide, or the larger protein in which the peptide is embedded.  The second enzyme then 
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removes the PPant-arm, and the functionality that it provides, returning the peptide to its 
original form.  This is illustrated in Figure 5. 

 

Figure 5: Illustration of the chemical reactions catalyzed by pair of enzymes utilized in the 
reversible labeling system, and the orthogonal reversible labeling system.  In the first 
reaction, catalyzed by a PPTase (either Sfp or AcpS), a phosphopantytheine arm (PPant-
arm) is added to a conversed serine residue within the peptide that is a substrate for this 
reaction (the red “S” in the figure). 

In this first demonstration of POOL’s use, we sought to find a peptide that was short 
enough to not disturb the functionality of proteins in which it would be embedded, but 
that would be a substrate for both of these chemical reactions.  To support this effort, we 
had a number of longer peptides obtained from organisms in nature that were known to 
be substrates for both enzymes, and some other peptides that were substrates for Sfp, but 
not for AcpH.  We also had two shorter peptides that were substrates for both, one of 
length 11 and one of length 13, discovered using phage display. 

We applied POOL v1.0 to this task, using it to find hits shorter than were previously 
known.  Figure 6 shows the number of hits found in each round, and their length.  After 
one round, we found a number of short hits of length equal to the shortest found using 
phage display, or somewhat larger.  After two rounds, we found more novel hits, and one 
whose length was 10 amino acids, shorter than found using phage display. 
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Figure 6: The progress of POOL v1.0 in finding peptide substrates for Sfp and AcpS.  After 
two rounds of POOL, we were able to find a peptide hit shorter than found using phage 
display, and were able to find a number of other novel hits. 

 

3.5.2. Orthogonal reversible peptide labeling systems 

Building on the success of POOL v1.0 in finding peptides that were substrates for both 
Sfp and AcpH, we used POOL v2.0 to find peptides that would support two orthogonal 
reversible peptides, one using Sfp and AcpH, and the other using a different PPTase, 
AcpS, together with AcpH.  This allows the addition of two different types of 
functionality to different peptide substrates, and proteins in which they are embedded, 
providing greater control and flexibility in the design and manipulation of peptide-based 
systems. 

To achieve this, we needed to find peptides that were substrates for AcpS and AcpH, but 
not Sfp (AcpS-specific labeling with unlabeling), and for Sfp and AcpH but not AcpS 
(Sfp-specific labeling with unlabeling). 

POOL v2.0 was critical to the success of this discovery process, because we did not have 
examples to start of peptides that provided specific labeling of either type with 
unlabeling, thus failing to meet the precondition for POOL v1.0.  Instead, we only had 
examples of peptides that exhibited activity with each individual enzyme, which met the 
conditions for POOL v2.0. 

Figure 7 shows the progress of POOL v2.0 in finding specific hits.  After 4 rounds, a 
number of specific hits of each type were found, including several short peptides that 
exhibited AcpS specific labeling with unlabeling, despite the fact that no peptides with 
this activity profile were known at the start of the experiment, regardless of length. 
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Figure 7: Discovery of novel peptide substrates over time using POOL v2.0 in the 
orthogonal reversible peptide labeling project.  We picture progress in discovering each of 
the four types of hits sought (upper left, peptides that were labeled by Sfp and not AcpS; 
lower left, peptides that were labeled by AcpS and not Sfp; upper right, peptides that were 
labeled by Sfp, not by AcpS, and unlabeled by AcpH; and lower right, peptides that were 
labeled by AcpS, not by Sfp, and unlabeled by AcpH).  For each type of hit, the total 
number of hits found versus the number of rounds of POOL is shown.  We see that for each 
type of hit, POOL is able to increase the number of hits found over time. 
 
Figure 8 shows a demonstration of reversible labeling, in which specifically labeled and 
unlabeled peptides were used to print letters on slides (“UCSD” using one of the 
specifically labeled peptides, and “AFOSR” with the other).  Enzymes Sfp, AcpS and 
AcpH were then applied to demonstrate labeling and partial unlabeling: in the first step, 
Sfp was applied to label the first peptide (UCSD) with fluorescent dye, without affecting 
the second peptide.  In the second step, AcpH was applied to unlabel this peptide.  In the 
third step, AcpS was applied to label the second peptide (AFOSR) with a different 
fluorescent dye, without affecting the first peptide.  
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Figure 8: Demonstration of orthogonal reversible labeling using POOL v2.0.  The upper 
diagram shows an idealized schematic of the experiment, while the bottom diagram shows 
images of the experimental results.  In the first step, the letters “UCSD” printed using one 
peptide discovered using POOL v2.0 are labeled using Sfp without labeling the other 
letters.  In the second step, these letters are unlabeled using AcpH.  In the third step, the 
letters “AFOSR” printed using another peptide discovered using POOL v2.0 are labeled 
by AcpS. 
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3.5.3. Peptide with specific metal binding activity 

In this ongoing joint work with Paras Prasad (Buffalo), Marc Knecht (Miami), and 
Tiffany Walsh (Deakin), we are using POOL v3.0 to suggest peptides to test in the search 
for peptides that are strong binders to one metal, and weak binders to another.  

The discovery of these peptides will support the Prasad team’s goal of creation of PARE-
based macromolecules, in which nanoparticles of different types (e.g., gold and silver) 
will be functionalized by a peptide sequence comprising two specifically-binding 
peptides (blue and red in Figure 9) linked together by another peptide sequence (green) 
that can be controlled, e.g., through temperature or pH.  This will allow the creation of 
reconfigurable assemblies of nanoparticles that exhibit novel optical, electronic, and 
photonic properties. 

 

Figure 9: Visualization of a PARE, in which nanoparticles are connected by switchable 
linkers to create reconfigurable assemblies of nanoparticles. 

In this project, peptides are tested individually, rather than in batches (as they were in the 
reversible labeling projects), and the number that can be tested is much smaller than in 
the reversible labeling projects (10s instead of 1000s).  This makes the peptide discovery 
problem more challenging.  To overcome this challenge, POOL v3.0 uses quantitative 
responses to obtain more information from each measurement. 

Although experiments are ongoing, and our scientific collaborators have not yet 
ascertained whether POOL will be able to successfully discover specific binders that 
achieve their scientific goals (we have tested two peptides thus far recommended by 
POOL), we have used simulation to study the performance of POOL, and to provide 
guidance on the risks of this project as a function of the experimental effort expended.  
This risk analysis is pictured in Figure 10. 
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Figure 10: Predicted probability of success versus experimental effort expended, in the 
metal binding project in collaboration with the Prasad team based at Buffalo.  Here, success 
is expressed as finding peptides whose ratio of binding coefficients (either gold to silver, 
or silver to gold) is improved over the best current specific binders by a given threshold.  
Through the generation of these plots, POOL can provide guidance to experimentalists 
regarding the overall probability of success in a given endeavor.  

 

3.6. The future of POOL 

Going forward, we are building on the success of the development of POOL in three 
ways: 

 First, we are continuing to work with AFOSR-funded scientists to use POOL to 
support their scientific aims.  In addition to ongoing collaborations with the 
Gianneschi and Prasad teams, the Mirkin lab, and AFRL, we made contact at the 
most recent 2015 AFOSR Natural Materials and Systems program review with 
Mark Blenner, Rein Ulijn, Carol Hall, and Carole Perry who are interested in 
using POOL in their own AFOSR-funded research. 
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 Second, we are continuing to improve the mathematical methodology underlying 
POOL, improving the accuracy of our statistical approach, the quality of our 
optimization and value of information analysis, and the generality of our 
approach. 

 Third, as POOL becomes established as a scientific technique, we are exploring 
ways to make its application more standardized, either through software that 
would be installed and used by scientists, or through a web interface that would 
avoid the need for a software installation. 

4. Software   

We started our research with the hope that we could develop a general purpose, web-
based package.  Originally called “Dr. Watson” (or just “Watson”), we evolved to 
“hOLMES” (OLMES =- optimal learning for material experiments).  However, as we 
worked with different scientific teams, we found that a general purpose package was 
much harder than we thought.  The difficulty was that each problem seemed to exhibit 
unique structural qualities that required custom systems.  Further, we came to appreciate 
that creating a general purpose software interface was simply well beyond what we could 
handle (especially while dealing with the custom problems, which also proved to be 
much more interesting from a methodological perspective). 

We have, however, created a new, general purpose testing environment for optimal 
learning called MOLTE (Modular, Optimal Learning Testing Environment) which can be 
used by the methodological community to compare different learning algorithms.  
MOLTE makes it possible for researchers (in the mathematical learning community) to 
introduce new methods, as well as new problem settings, each of which are captured in 
their own Matlab-based “.m” file.  The software, along with a detailed users manual, can 
be downloaded from 

 http://castlelab.princeton.edu/software.htm#molte  

This environment should improve the relatively poor state of experimental work in the 
learning community.  However, we have not yet generalized the ability to handle the 
more complex belief models that we encountered in different materials science settings.  
We believe that this can be handled by an extension where belief models are also 
represented in their own matlab modules which would have to be provided by the user. 

We have also transitioned Bayesian optimization algorithms to industry, through the joint 
development of the Metrics Optimization Engine (MOE, https://github.com/yelp/moe) 
together with the tech company Yelp, and Frazier’s former PhD student Scott Clark.  
MOE is an open source Bayesian global optimization engine for real-world metric 
optimization, where a “metric” is understood to be any performance measure.  While the 
place where it has seen the most use is within the tech industry, by Yelp and by Netflix, 
the class of Bayesian optimization problems solved includes optimization of functions 
with low-dimensional vector-valued inputs (e.g., temperature and pressure), and is also of 
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use in chemical discovery applications.  This work has also spawned a startup company, 
Sigopt, http://sigopt.com/. 

5. Education 

We have accepted that one dimension of our work is an educational one.  While we can 
develop tools to help guide scientists, such as showing the value of information, we also 
felt that we could add value to the scientific process by providing scientists with a 
principled approach to sequential design of experiments.  This process consists of the 
following steps: 

1. Belief construction – Before running any experiments, a scientist should capture 
what he/she already believes based on past experience and knowledge of the 
underlying physics and chemistry. 

2. Articulating experimental choices – These are the decisions a scientist has to 
make.  Interestingly, we have encountered situations where the scientist had not 
clearly articulated all the potential experimental choices. This can be 
overwhelming – in some cases these are overwhelmingly large. 

3. Understand what you will (or might) learn from an experiment.  Generally these 
are the laboratory measurements that will be made. 

4. Belief updating – Understand how the results of your experiment will be used to 
update your belief. 

5. Objectives – Articulate what you want to achieve from an experiment.  This might 
be a combination of learning about the physics of the problem (e.g. learning 
unknown parameters), as well as trying to optimize some metric (maximizing the 
conductivity or strength of a material, or minimizing the deviation from a target 
release pattern). 

These five components represent the fundamental elements of any sequential decision 
problem. 

We have developed a series of PowerPoint presentations that were designed as a self-
guided tutorial.  These are available at 

http://optimallearning.princeton.edu/tutorialsciences.htm  

We have also written a tutorial article, which is to appear in an edited volume on 
informatics methods for materials scientists, with a preliminary version available here: 

http://arxiv.org/pdf/1506.01349.pdf 

 

DISTRIBUTION A: Distribution approved for public release.


	DTIC_Title_Page_-_Optimal_Learning_for_Efficient_Experimentation_in_Nanotechnology,_Biochemistry
	FA9550-12-1-0200 SF298v
	FA9550-12-1-0200 FINAL REPORT



